Table of Contents Table of Contents
Previous Page  56 / 82 Next Page
Information
Show Menu
Previous Page 56 / 82 Next Page
Page Background

314

Cuando IP es activado por PGI

2

, estimula a adeni-

lato ciclasa (AC), cuya isoforma más importante

a nivel pulmonar es la AC

2

, incrementando los

niveles intracelulares de adenosina-monofosfato

cíclico (AMPc). Los niveles incrementados de

AMPc conllevan a la activación de la proteína

quinasa A (PKA) y posterior fosforilación de

proteínas claves. Los efectos de la PGI

2

en las

células vasculares están mediados por diferentes

vías de señalización, incluyendo la vía PGI

2

/IP/

Gs/AMPc clásico y las vías intracrinas que impli-

can receptores nucleares

34

.

Agradecimientos

Los autores agradecen el apoyo financiero a

sus investigaciones otorgado por los proyectos

FONDECyT 114064, 1151119 y VID Enlace

Universidad de Chile

.

Bibliografía

1.- Rudolph A. Fetal and Neonatal Pulmonary Circula-

tion Ann. Rev. Physiol. 1979; 41: 383-95.

2.- Abman SH. Recent advances in the pathogenesis and

treatment of persistent pulmonary hypertension of the

newborn. Neonatology 2007; 91: 283-90.

3.- Gao Y, Raj U. Regulation of the pulmonary circula-

tion in the fetus and the newborn. Physiol Rev. 2010;

90: 12191-1335.

4.- Hillman N, Kallapur SG, Jobe A. Physiology

of transition from intrauterine to extrauterine life. Clin

Perinatol. 2012; 39: 769-83.

5.- Hooper SB, Te Pas AB, Lang J, Van Vonde-

ren JJ, Roehr CC, Kluckow M, et al. Cardio-

vascular transition at birth: a physiological sequence.

Pediatric Research. 2015; 77: 608-14.

6.- Haworth SG. Development of the normal and

hypertensive pulmonary vasculature. Experimental

physiology 1995; 80: 843-53.

7.- Haworth SG, Hall SM, Chew M, Allen K.

Thinning of fetal pulmonary arterial wall and postnatal

remodeling: ultrastructural studies on the respiratory

unit arteries of the pig. Virchows Arch A Pathol Anat

Histopathol. 1987; 411: 161-71.

8.- Peñaloza D, Arias-Stella J. The heart and

pulmonary circulation at high altitudes: healthy highlan-

ders and chronic Mountain sickness. Circulation 2007;

115: 1132-46.

9.- Murthy KS. Signaling for contraction and relaxation

in smooth muscle of the gut. Ann Rev Physiol. 2006;

68: 345-74.

10.- Ogut O, Brozovich F. The potential role of MLC

phosphatase and MAPK signalling in the pathogenesis

of vascular dysfunction in heart failure. J Cell Mol Med.

2008; 12: 2158-64.

11.- Wray S , Burdyga T. Sarcoplasmic reticulum

function in smooth muscle. Physiological reviews.

2010; 90: 113-78.

12.- Yang XR, Lin MJ, Sham JS. Physiological

functions of transient receptor potential channels in

pulmonary arterial smooth muscle cells. In: Membrane

Receptors, Channels and Transporters in Pulmonary Cir-

culation.Springer International Publishing AG. Humana

Press. New York. 2010; pp 109-22.

13.- Jernigan NL, Resta TC. Calcium homeostasis

and sensitization in pulmonary arterial smooth muscle.

Microcirculation. 2014; 21: 259-71.

14.- Butler T, Paul J, Europe-Finner N, Smith

R, Chan EC. “Role of serine-threonine phosphopro-

tein phosphatases in smooth muscle contractility”. Am

J Physiol - Cell Physiol 2013; 304: C485-504.

15.- Xiong Z, Sperelakis N. Regulation of L-type

calcium channels of vascular smooth muscle cells. J

Molecular cellular cardiol. 1995; 27: 75-91.

16.- Raeymaekers L, Hofmann F, Casteels R.

Cyclic GMP-dependent protein kinase phosphorylates

phospholamban in isolated sarcoplasmic reticulum from

cardiac and smooth muscle. Biochem J. 1988; 252269-

73.

17.- Sylvester JT, Shimoda LA, Aaronson PI,

Ward JPT. Hypoxic pulmonary vasoconstriction.

Physiol Rev 2012; 92: 367-520.

18.- Khapchaev AY, Shirinsky P. Myosin light

chain kinase MYLK1: anatomy, interactions, functions,

and regulation. Biochemistry (Moscow); 2016; 81:

1676-97.

19.- Wilson DP, Susnjar M, Kiss E, Suther-

land C, Walsh MP. Thromboxane A2-induced

contraction of rat caudal arterial smooth muscle in-

volves activation of Ca

2+

entry and Ca

2+

sensitization:

Rho-associated kinase-mediated phosphorylation of

MYPT1 at Thr-855, but not Thr-697. Biochem J. 2005;

389: 763-74.

20.- Kawka DW, Ouellet M, Hétu P, Singer

II, Riendeau D. Double-label expression studies

of prostacyclin synthase, thromboxane synthase and

COX isoforms in normal aortic endothelium. Biochim

Biophys Acta 2007; 1771: 45-54.

21.- Delaney C, Gien J, Grover TR, Roe G,

Abman SH. Pulmonary vascular effects of serotonin

and selective serotonin reuptake inhibitors in the late-

gestation ovine fetus. American J Physiol-Lung Cellular

Molecular Physiol. 2011, 301: L937-L944.

22.- Kloza M, Baranowska-Kuczko M,

Pedinska-Betiuk A, Jackowski K, Kos-

lowska H. Serotonin hypothesis and pulmonary

artery hypertension. Postepy Hig Med Dows. 2014; 68:

738-48.

23.- Webb RC. Smooth muscle contraction and relaxation.

Advn Physiol education. 2003; 27: 201-16.

Rev Chil Enferm Respir 2017; 33: 308-315

F. A. Beñaldo F. et al.